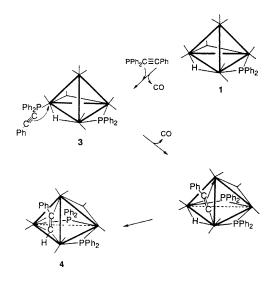
Opening of an Ir₄ Cluster: The Reactions of [HIr₄(CO)₁₀(µ-PPh₂)] with PPh₂C=CPh

Dario Braga,** Maria Helena A. Benvenutti,^b Fabrizia Grepioni^a and Maria D. Vargas*^b

^a Dipartimento di Chimica 'G. Ciamician,' Universitá degli Studi di Bologna, via F. Selmi 2, 40126 Bologna, Italy ^b Instituto de Química, Universidade Estadual de Campinas, CP 6154, Campinas 13081, SP. Brazil

Reaction of $[HIr_4(CO)_{10}(\mu-PPh_2)]$ **1** with PPh₂C=CPh yields the CO replacement compound $[HIr_4(CO)_9(PPh_2C=CPh)(\mu-PPh_2)]$ **3**, that is readily converted to the species $[Ir_4(CO)_7(\mu-CO)(\mu-PPh_2)_2(\mu_3-\eta^2-HC_2Ph)]$ **4**; reaction of **1** with PPh₂C=CPh in the presence of base, followed by protonation, affords the novel compound $[HIr_4(CO)_9(\mu_4-\eta^3-PPh_2C_2Ph)(\mu-PPh_2)]$ **5**.


The reactions of di- and poly-nuclear carbonyl compounds of the iron subgroup with phosphinoacetylenes $PR_2C\equiv CR'$ have been widely investigated over the last 15 years.^{1,2} It has been established that P–C bond cleavage can generally be induced by thermolysis,³ photolysis¹ and chemical activation using Me_3NO ,⁴ to generate phosphido –PR₂ and –C₂R' bridging fragments. The mechanism of the P–C bond cleavage is unknown, but the formation of a π -interacting acetylene intermediate, followed by oxidative insertion into the P–C bond, has been proposed.^{1,5}

Considering that both $[HIr_4(CO)_{10}(\mu-PPh_2)]$ 1 and the monoanion $[Ir_4(CO)_{10}(\mu-PPh_2)]^-$ 2⁶ are extremely reactive towards phosphines but inert towards acetylenes,⁷ we thought it was worth investigating their reactions with PPh₂C=CPh, as

an alternative route for obtaining acetylide and acetylene coordinated species. Indeed, the presence of a hydride ligand in 1 could extend the type of reactivity generally observed by the possible insertion of the C–C triple bond into the Ir–H bond. The literature gives only two precedents for this type of reaction with the clusters $[HRu_3(CO)_9(\mu-PPh_2)]^2$ and $[PPh_4][HFe_3(CO)_{11}].^8$

$$[Ir_4(CO)_{10}(\mu-PPh_2)]^-$$

2

The reaction of 1 with L (PPh₂C \equiv CPh; 1 equiv.) in CH₂Cl₂ gives the CO replacement compound [HIr₄(CO)₉L(μ -PPh₂)] **3** (70% yield after TLC (CH₂Cl₂-hexane, 3:7, as eluent). This compound was characterized by analysis and spectroscopic

data,[†] that confirm that its structure is similar to that of the L = PPh_3 derivative **3a**, which has been established by X-ray diffraction.⁷

When a solution of **3** in CH_2Cl_2 was kept at room temperature for 24 h, quantitative conversion to $[Ir_4(CO)_7(\mu -$ CO) $(\mu$ -PPh₂)₂ $(\mu_3$ - η^3 -HC₂Ph)] 4 took place, complex 4 being isolated in 90% yield after crystallization from hexane and fully characterized by analysis and spectroscopic data.† The molecular structure of 4 was established by an X-ray diffraction study‡ and is shown in Fig. 1. The species exhibits a tetrahedral metal framework, with two elongated edges [Ir(1)-Ir(3) 3.180(3) and Ir(1)-Ir(2) 2.976(3) Å], which are spanned by the two three-electron donor phosphido bridges. The phenylacetylene is σ -bonded to Ir(2) and Ir(4) and π -bonded to Ir(3) and as such it bonds to the cluster in the common $\mu_3 - \eta^2 - \parallel$ fashion contributing four electrons to the cluster orbitals. The C-C (alkyne) bond distance [1.512(6) Å] is much longer than the values associated with clusters of this kind capped on a triangular face with an acetylene unit (1.33–1.43 Å).⁹ The eight terminal CO groups are distributed one on Ir(1) and two on each remaining Ir atom, and a semi-bridging carbonyl spans the Ir(1)-Ir(4) edge [Ir(1)-C(2)]1.92(4) and Ir(4)-C(2) 2.15(5) Å.

The reactions leading from 1 to 4 are given in Scheme 1. Although P–C bond cleavage is now an established phenomenon, this process is not usually observed to occur under such

4: IR (hexane) v(CO)/cm⁻¹, 2062w, 2042s, 2034vs, 2004vw, 1990w and 1853w, br; FAB MS (nitrobenzyl alcohol matrix) (calc. for ¹⁹³Ir) 1466 (M)⁺⁺ and 1466 – 28x, $x = 1-8 [M - (CO)_x]^{++}$; ¹H NMR (CD₂Cl₂) δ 9.1 (s, HCCPh) and 7.2–7.8 (m, Ph).

5: IR (hexane) v(CO)/cm⁻¹, 2074m, 2044vs, 2030vs, 2014vs, 1972w and 1957vw; FAB MS (nitrobenzyl alcohol matrix) (calc. for ¹⁹³Ir) 1496 (M)⁺⁺ and 1496 – 28_x , x = 1-9 [M – CO_x]⁺⁺ (M – 2CO)⁺⁺; ³¹P{¹H} NMR (CD₂Cl₂) δ – 58.50 (d) and –63.53 (d) (J_{P-P} 20.3 Hz); Satisfactory elemental analyses.

[HIr₄(CO)₈ (PPh₂C=CPh)₂(µ-PPh₂)]: IR (hexane) v/cm⁻¹, v(C=C) 2172w; v(CO) 2068m. 2052m, 2022s, 1987m, br and 1805w, br.

 $\begin{array}{ll} [HIr_4(CO)_8(PPh_3)(\mu_4\cdot\eta^3\mbox{-}PPh_2C_2Ph)(\mu\mbox{-}PPh_2)]; & IR & (hexane), \\ v(CO)/cm^{-1} & 2036vs, & 2010s, & 1957m, & br & and & 1740w, & br; & FAB & MS \\ (nitrobenzyl alcohol matrix) & (calc. & for ^{193}Ir) & 1727 & (M)^{*+} & and & 1727 & - \\ 28x, & x &= 1-8 & [M - (CO)_x]^{*+}. \end{array}$

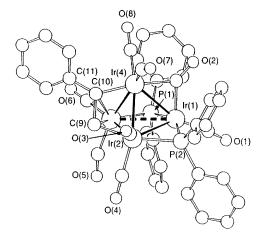


Fig. 1 The molecular structure of $[Ir_4(CO)_7(\mu-CO)(\mu-PPh_2)_2(\mu_3-\eta^2-HC_2Ph)]$ 4. Relevant bond distances (Å) and angles (°): Ir(1)-Ir(2) 2.976(3), Ir(1)-Ir(3) 3.180(3), Ir(1)-Ir(4) 2.861(3), Ir(2)-Ir(3) 2.847(3), Ir(2)-Ir(4) 2.730(3), Ir(3)-Ir(4) 2.696(3), Ir(1)-P(1) 2.847(3), Ir(2)-Ir(4) 2.34(1), Ir(1)-P(2) 2.26(1), Ir(2)-P(2) 2.37(1), Ir(2)-C(9) 2.00(5), Ir(3)-C(9) 2.27(4), Ir(3)-C(10) 2.40(5), Ir(4)-C(10) 1.95(5), C(9)-C(10) 1.512(6), Ir(1)-C(2)-Ir(4) 89(2), Ir(1)-P(1)-Ir(3) 87.1(4), Ir(1)-P(2)-Ir(2) 79.9(5), C(9)-C(10)-C(11) 118(4).

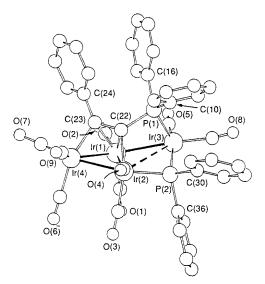
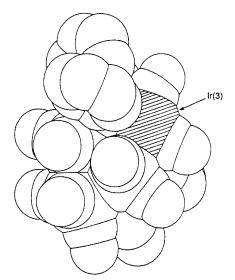



Fig. 2 The molecular structure of $[HIr_4(CO)_9(\mu_4-\eta^3-PPh_2C_2Ph)(\mu-PPh_2)]$ 5. Relevant bond distances (Å) and angles (°): Ir(1)-Ir(2) 2.627(2), Ir(1)-Ir(3) 2.828(2), Ir(1)-Ir(4) 2.713(2), Ir(2)-Ir(3) 3.686(2), Ir(2)-Ir(4) 2.723(2), Ir(1)-C(23) 2.29(4), Ir(1)-C(22) 2.11(2), Ir(2)-C(22) 2.11(2), Ir(4)-C(23) 2.07(4), C(22)-C(23) 1.33(4), Ir(3)-P(1) 2.37(1), P(1)-C(22) 1.85(2), Ir(2)-P(2) 2.36(1), Ir(3)-P(2) 2.34(1), C(24)-C(23)-C(22) 128(3), C(23)-C(22)-P(1) 130(2), C(22)-P(1)-Ir(3) 96(1), Ir(2)-P(2)-Ir(3) 103.3(3).

mild conditions.^{1.2} A similar process has been observed in the reaction of $[HRu_3(CO)_9(\mu-PPh_2)]$ with PPh₂C \equiv CR (R = Ph, Bu^t or Prⁱ),³ while migration of a hydride ligand onto the β -carbon generating a vinylidene ligand has been shown to occur in the reaction of the anionic cluster $[HFe_3(CO)_{11}]^-$ with PPh₂C \equiv CCMe₃.⁸

The reaction of the anionic species **2** with PPh₂C \equiv CPh has also been investigated. Deprotonation *in situ* of 1⁵ with 1.8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the presence of PPh₂C \equiv CPh in CH₂Cl₂, followed by protonation with tri-

[†] Spectroscopic data: **3**: IR (hexane), v/cm⁻¹, v(C=C) 2172w; v(CO) 2068s, 2032vs, 2004s, 1994m, 1982m, sh and 1830w, br; ¹H NMR (CD₂Cl₂) δ –11.78 (dd, hydride) $[J_{H-P}/Hz 55.8$ (PPh₂) and 6.0 (PPh₂C=CPh)] and 6.7-7.9 (m, Ph); ³¹P{¹H} NMR, δ 283.0 (s, PPh₂) and -41.0 ppm (s, PPh₂C=CPh), ref. H₃PO₄.

Fig. 3 Space filling diagram of **5** showing the free coordination site on Ir(3)

fluoroacetic acid affords, after TLC (CH₂Cl₂-hexane, 3:7, as eluent; up to 50% yield after crystallization from CH₂Cl₂-hexane), the bright yellow compound [HIr₄(CO)₉(μ_4 - η^3 -PPh₂C₂Ph)(μ -PPh₂)] **5**, fully characterized by analysis and spectroscopic data.[†] As expected on the basis of the analogous reaction with L = PPh₃,⁷ the CO substituted tetrahedral species [HIr₄(CO)_{10-n}L_n(μ -PPh₂)] (L = PPh₂C≡CPh, n = 1, **3**, 15%; n = 2,[†] 10%) are also isolated from the reaction mixture.

The molecular structure of **5** has been established by X-ray diffraction[‡] and is shown in Fig. 2. The metal framework of **5** can be described as a spiked triangle, or alternatively as a flat butterfly with an elongated edge. A complex pattern of ligand to cluster bonding interactions are observed: (*i*) the 'long' Ir–Ir edge [3.686(2) Å] is spanned by a three-electron donor phosphinidene ligand: (*ii*) the phosphinoacetylene ligand interacts with the four iridium atoms, formally contributing a total of six electrons to the cluster orbitals *via* a two-electron P–Ir bond and two σ -interactions and one π -interaction from

Crystal data for 5: $C_{41}H_{25}Ir_4O_9P_2$, M = 1492, space group $P2_1/n$, a = 11.840(3), b = 18.745(9), c = 18.695(8) Å, $\beta = 100.63(3)^{\circ}, U =$ 4077.9 Å³, Z = 4, $D_c = 2.43$ g cm⁻³, F(000) 2724, μ (Mo-K α) = 126.5 cm⁻¹, θ range 2.5–20°, final R 0.058, $R_{\rm w}$ 0.060, for 2609 out of 2642 observed unique reflexions with $F_o > 4\sigma(F_o)$. An absorption correction was applied by the Walker and Stuart method11 (correction range 0.44-1.00). Common to both species: intensity data were collected at room temperature with an Enraf-Nonius CAD4 diffractometer by the ω -2 θ scan method. Fast decay under X-ray exposure prevented extension of the data collection beyond $\theta = 20^{\circ}$. All atoms but the hydrogens and the phenyl carbon atoms in 5 were allowed to vibrate anisotropically. The H atoms of the phenyl groups were added in calculated positions (C-H 1.08 Å) and refined 'riding' on their respective C atoms; a single isotropic thermal parameter was also refined for the H atoms [0.15(6) and 0.14(4) Å for 4 and 5, respectively]. The structures were solved by direct methods.¹² Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre; see Notice to Authors, Issue No. 1.

the acetylene system: (*iii*) three of the nine carbonyl groups are on the wing-tip Ir(4) atom which is interacting in a σ -manner with the acetylene, each remaining Ir atom having two carbonyl groups; (*iv*) the hydride ligand is probably bound in a terminal fashion to the Ir(3) atom, which exhibits a 'free' coordination site in the space-filling diagram shown in Fig. 3. The metal core is almost flat [angle between the Ir(1)–Ir(2)– Ir(4) and Ir(1)–Ir(2)–Ir(3) planes 17°]. Both the C–C bond length [C(22)–C(23) 1.33(4) Å] and the C(Ph)–C=C and C=C–P angles [128(3) and 130(2)°, respectively] indicate that the hybridization of the acetylene atoms is essentially sp².

To our knowledge 5 represents the only case of a phosphinoacetylene acting as a 6-electron donor to a carbonyl cluster, in which the bridged metal atoms are all linked by M-M bonds.¹⁰ Attempts at cleaving the P-C bond in 5 have so far been unsuccessful. Heating $\overline{5}$ in toluene (50–90 °C), photolysis (hexane; λ_{max} 366 nm) and reaction with Me₃NO only lead to decomposition. Heating 5 in CH_2Cl_2 under reflux in the presence of PPh₃ or the reaction of 5 with Me₃NO-PPh₃ gives quantitative yields of the canary yellow species [HIr₄- $(CO)_8(PPh_3)(\mu_4-\eta^3-PPh_2C_2Ph)(\mu-PPh_2)$ [†] which also does not undergo P-C bond cleavage under the conditions just described. These results suggest that the ease with which such a process occurs does not only depend on the facility of formation of free coordination sites on the clusters via CO loss.¹⁰ It seems that an intermediate containing the phosphinoacetylene as tightly bound to a rigid metal frame as in 5 should be ruled out in the formation of $-PPh_2$ and $-C_2Ph$ containing clusters and that the activation of the P-C bond is probably best achieved through a transient two electron π -interaction of the acetylene with a metal centre upon CO loss or M-M bond cleavage.

We thank S. Naylor (MRC Toxicology Unit) for FAB MS measurements, M. Martinelli (Cambridge), for ³¹P NMR data, D. W. Franco (USP São Carlos, Brazil) for ¹H NMR data, H. E. Toma (USP São Paulo, Brazil) for analyses, CNPq, Brazil (M. H. A. B., M. D. V.), FAPESP, Brazil (M. D. V.), and Ministero Pubblica Istruzione, Italy (D. B., F. G.) for research grants, and Johnson Matthey for a generous loan of IrCl₃.

Received, 25th June 1990; Com. 0/02858D

References

- A. J. Carty, *Pure Appl. Chem.*, 1982, 54, 113; A. J. Carty, *Adv. Chem. Ser.*, 1982, 196, 163; S. A. MacLaughlin, N. J. Taylor and A. J. Carty, *Organometallics*, 1984, 3, 392; S. A. MacLaughlin, N. J. Taylor and A. J. Carty, *Organometallics*, 1983, 2, 1194.
- 2 F. V. Gastel, S. A. MacLaughlin and M. Lynch, J. Organomet. Chem., 1987, 326, C65.
- 3 W. F. Smith, J. E. Yule, N. J. Taylor, H. N. Park and A. J. Carty, *Inorg. Chem.*, 1977, 16, 1593.
- 4 D. Nucciarone, S. A. MacLaughlin, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 106.
- 5 E. Sappa, G. Pasquinelli, A. Tiripicchio and M. Tiripicchio Camellini, J. Chem. Soc., Dalton Trans., 1989, 601.
- 6 J. N. Nicholls, P. R. Raithby and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1986, 1617.
- 7 P. R. Raithby and M. D. Vargas, manuscript in preparation.
- 8 J. Suades, F. Dahan and M. Mathieu, Organometallics, 1989, 8, 842.
- 9 E. Sappa, A. Tiripicchio and P. Braunstein, Chem. Rev., 1983, 83, 203.
- 10 E. Sappa, G. Predieri, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 1985, 297, 103.
- 11 N. Walter and D. Stuart, Acta Crystallogr., Sect. A, 1983, **39**, 158.
- 12 G. M. Sheldrick, SHELX 76 Systems for Computer Programs, University of Cambridge, 1976.

[‡] Crystal data for 4: C₄₀H₂₆Ir₄O₈P₂, M = 1465, space group P2₁/n, a = 8.94(2), b = 39.05(2), c = 11.954(6) Å, β = 104.57(8)°, U = 4037.1 Å³, Z = 4, D_c = 2.41 g cm⁻³, F(000) = 2672, μ (Mo-Kα) = 127.8 cm⁻¹, θ range 2-20°, final R 0.069, R_w 0.073, for 2108 out of 2872 observed unique reflexions with F_o > 4 σ(F_o).